#### Johnson Matthey Inspiring science, enhancing life

Simulating Catalytic Reaction and Soot Oxidation in Coated Particulate Filters: A Simplified Modelling Framework Including Diffusion Effects

Tim Watling

JM

Particulate Matter: Lifecycle & Mitigation, Leicester, 11<sup>th</sup> March 2024

#### Concept

- Simplified framework for simulating reaction in coated particulate filters
  - Avoids discretisation in the through wall direction

- In this presentation:
  - Will focus on the modelling approach, as that is what is new
  - Less on model predictions, as that is more well known
    - Except to demonstrate that the model gives plausible predictions

Published: T.C. Watling, Emiss. Control Sci. Technol. 9, 93-119 (2023) Sharing link: <u>https://rdcu.be/dcBH6</u>

| 01 | Concept                                              |
|----|------------------------------------------------------|
| 02 | Model description                                    |
| 03 | Simulation conditions and parameters                 |
| 04 | Example simulations: Oxidation of gaseous components |
| 05 | Example simulations: Soot oxidation                  |
| 06 | Summary / Conclusions                                |

#### Concept

#### 02 Model description

- Simulation conditions and parameters
- Example simulations: Oxidation of gaseous components
- Example simulations: Soot oxidation

Summary / Conclusions

#### **Included Diffusion Pathways**

1) Diffusion between gas in channels and adjacent walls

- Similar to flow-through monoliths
- 2) Diffusion between inlet and outlet channels along path of convective flow from inlet channel to outlet channel
  - Analogous to axial dispersion in a packed bed reactor
  - Imagine filter wall as being like a packed bed reactor
- 3) Diffusion between gas passing through filter wall and catalyst phase
  - Analogous to external transport in a packed bed
  - Not included in most particulate filter models
  - Enables a simplification in this model

#### Model Structure: Soot & Ash Cakes, Filter Wall

- Filter discretised axially
- For each axial element, divide cake and wall into layers
  - Soot cake, ash cake, filter wall
  - Can vary thickness of each layer
  - Wall split into two layers
    - One catalysed, one inert
      - In either order
    - Allows through-wall position of catalyst to be varied
- Transport by:
  - Convection from inlet channel to outlet
  - Diffusion between channels along same path



Figure first published in [1] by Springer Nature.  $\bigcirc$  T.C. Watling, under exclusive license to Springer Nature AG 2023

### Simplifications

- Simplifications:
  - Discretise filter axially



- Assume all layers are slabs/cuboids neglect taper on soot and ash cakes
- Soot oxidation is first order in NO<sub>2</sub> and O<sub>2</sub>
- Use single, representative concentration for each species in the catalyst phase in each axial element
  - Probably, most significant approximation
- Consequences (benefits):
  - Component mass balance for each layer is a second-order, linear differential equation
    - These have an analytical solution for the concentration of the species through the layer
  - Result in a system of linear simultaneous equations, which are easily solved (with linear algebra)

6

#### Component Mass Balances for Gas in Inlet and Outlet Channel **Differential equations**

Balance equations for inlet and outlet channels: ٠

• 
$$0 = -\frac{1}{M} \frac{\partial d_i^2 \phi_i x_{gi,j}}{\partial z} + p_i k_{mi,j} (C_{gw0,j} - x_{gi,j} C_{Ti}) - \frac{4\psi_w C_{gw0,j}}{\rho_{gw}}$$
 Inlet channel  
•  $0 = -\frac{1}{M} \frac{\partial d_o^2 \phi_o x_{go,j}}{\partial z} + p_o k_{mo,j} (C_{gwm,j} - x_{go,j} C_{To}) + \frac{4\psi_w C_{gwm,j}}{\rho_{gw}}$  Outlet channel  
Convection  
along channel Diffusion to channel wall Convection  
to/from wall

 $d_{ii}$ ,  $d_{o}$  =width of inlet/outlet channel =molar mass of gas Μ =concentration of gas entering wall  $C_{gw0,j}$ = concentration of gas leaving wall  $C_{gwm,i}$  $C_{Ti}$ ,  $C_{To}$ =total gas concentration in channel  $k_{mi,i}$ ,  $k_{mo,i}$ =mass transfer coefficients  $p_i$ ,  $p_o$  = channel perimeter

| x <sub>gi,j</sub> , x <sub>g</sub> | <sub>o,j</sub> =mole fraction in inlet/outlet channel |
|------------------------------------|-------------------------------------------------------|
| Ζ                                  | =axial coordinate                                     |
| $ ho_{gw}$                         | =density of gas in wall                               |
| $\phi_i, \phi_o$                   | =mass flux along inlet/outlet channel                 |
| $\psi_w$                           | =mass flow through one wall per unit                  |
|                                    | length of filter                                      |

# Component Mass Balances for Gas in Inlet and Outlet Channel **Discretised equations**

Balance equations for inlet and outlet channels:
$$0 = -\frac{1}{M} \frac{\partial d_i^2 \phi_{ix} g_{i,j}}{\partial z} + p_i k_{mi,j} (C_{gw0,j} - x_{gi,j} C_{Ti}) - \frac{4\psi_w C_{gw0,j}}{\rho_{gw}}$$

$$0 = -\frac{1}{M} \frac{\partial d_o^2 \phi_{x} g_{o,j}}{\partial z} + p_o k_{mo,j} (C_{gwm,j} - x_{go,j} C_{To}) + \frac{4\psi_w C_{gwm,j}}{\rho_{gw}}$$
These discretise to:
Inlet channel:
$$0 = \frac{d_{i,k-1}^2 \phi_{i,k-1} x_{gi,j,k-1}}{M} - \frac{d_{i,k}^2 \phi_{i,k} x_{gi,j,k}}{M} + p_i k_{mi,j,k} \left( C_{gw0,j,k} - \frac{[x_{gi,j,k-1} C_{Ti,k-1} + x_{gi,j,k} C_{Ti,k}]}{2} \right) \delta z - \frac{4\psi_{w,k} C_{gw0,j,k}}{\rho_{gw,k}} \delta z$$

Outlet channel (except first element):

• 
$$0 = \frac{d_o^2 \phi_{o,k-1} x_{go,j,k-1}}{M} - \frac{d_o^2 \phi_{o,k} x_{go,j,k}}{M} + p_o k_{mo,j,k} \left( C_{gwm,j,k} - \frac{[x_{go,j,k-1} C_{To,k-1} + x_{go,j,k} C_{To,k}]}{2} \right) \delta z + \frac{4\psi_{w,k} C_{gwm,j,k}}{\rho_{gw,k}} \delta z$$

• Outlet channel (first element):

• 
$$0 = -\frac{d_o^2 \phi_{o,1} x_{go,j,1}}{M} + p_o k_{mo,j,1} (C_{gwm,j,1} - x_{go,j,1} C_{To,1}) \delta z + \frac{4\psi_{w,1} C_{gwm,j,1}}{\rho_{gw,1}} \delta z$$

#### Component Mass Balances Through Wall General form

• In general, component mass balance for layer of wall has form:

• 
$$\underbrace{D_{eT,j,k,l} \frac{\partial^2 C_{gw,j,k}}{\partial y^2}}_{\text{Diffusion}} - \underbrace{\frac{\phi_{w,k}}{\rho_{gw,k}} \frac{\partial C_{gw,j,k}}{\partial y}}_{\text{Convection}} + source/sink terms = 0$$

- $D_{eT,j}$  is effective diffusion coefficient for through-wall diffusion (subscripted T=through-wall)
  - This for diffusion along same path as convective flow through-wall
- Provided equation linear, this has solution of the form:
  - $C_{gw,j,k} = A_{j,k,l}e^{\alpha_{j,k,l}y} + B_{j,k,l}e^{\beta_{j,k,l}y} + other terms$
  - Create two arbitrary constants (A & B) per layer, per species, per axial element

| $C_{gw,j,k}$ =Concentration in gas passing through wall | j=index for species       |
|---------------------------------------------------------|---------------------------|
| y =through-wall distance                                | k=index for axial element |
| $\phi_{w,k}$ =mass flux through wall                    | l=index for layer         |

#### Component Mass Balances Through Wall Soot oxidation: Oxidants (NO<sub>2</sub> & O<sub>2</sub>)

• Soot oxidises according to:

• 
$$\frac{1}{2-S_{NO2}^{CO}}C + NO_2 \rightarrow \frac{S_{NO2}^{CO}}{2-S_{NO2}^{CO}}CO + \frac{1-S_{NO2}^{CO}}{2-S_{NO2}^{CO}}CO_2 + NO$$
  
•  $\frac{2}{2-S_{O2}^{CO}}C + O_2 \rightarrow \frac{2S_{O2}^{CO}}{2-S_{O2}^{CO}}CO + \frac{2(1-S_{O2}^{CO})}{2-S_{O2}^{CO}}CO_2$ 

• Component mass balance for NO<sub>2</sub> in soot cake given by:

• 
$$D_{eT,NO2,k,1} \frac{\partial^2 C_{gw,NO2,k}}{\partial y^2} - \frac{\phi_{w,k}}{\rho_{gw,k}} \frac{\partial C_{gw,NO2,k}}{\partial y} - k_{NO2,k} C_{gw,NO2,k} = 0$$

• This has solution:

• 
$$C_{gw,j,k} = A_{j,k,1}e^{\alpha_{j,k,1}''} + B_{j,k,1}e^{\beta_{j,k,1}''}$$
  
• where:  $\alpha_{j,k,1}'' = \frac{\phi_{w,k}/\rho_{gw,k} - \sqrt{\phi_{w,k}^2/\rho_{gw,k}^2 + 4D_{eT,j,k,1}k_{j,k}}}{2D_{eT,j,k,1}}, \ \beta_{j,k,1}'' = \frac{\phi_{w,k}/\rho_{gw,k} + \sqrt{\phi_{w,k}^2/\rho_{gw,k}^2 + 4D_{eT,j,k,1}k_{j,k}}}{2D_{eT,j,k,1}}$ 

• Similar equations apply for  $O_2$ 

#### JM

## Component Mass Balances Through Wall Soot oxidation: Products of soot oxidation (CO & NO)

• Soot oxidised by NO<sub>2</sub> according to:

• 
$$\frac{1}{2-S_{NO2}^{CO}}C + NO_2 \rightarrow \frac{S_{NO2}^{CO}}{2-S_{NO2}^{CO}}CO + \frac{1-S_{NO2}^{CO}}{2-S_{NO2}^{CO}}CO_2 + NO$$

• Component mass balance for NO in soot cake given by:

• 
$$D_{eT,NO,k,1} \frac{\partial^2 C_{gw,NO,k}}{\partial y^2} - \frac{\psi_{w,k}}{\rho_{gw,k}} \frac{\partial C_{gw,NO,k}}{\partial y} + k_{NO2,k} C_{gw,NO2,k} = 0$$

- Term for NO formation depends on solution for NO<sub>2</sub> concentration through soot cake
- Solution for NO concentration:

• 
$$C_{gw,NO,k} = A_{NO,k,1} + B_{NO,k,1}e^{\beta'_{NO,k,1}y} + k_{NO2,k} \left( \frac{A_{NO2,k,1}e^{\alpha''_{NO2,k,1}y}}{\alpha''_{NO2,k,1}\psi_{w,k}/\rho_{gw,k} - \alpha''^{2}_{NO2,k,1}D_{eT,NO,k,1}} + \frac{B_{NO2,k,1}e^{\beta''_{NO2,k,1}y}}{\beta''_{NO2,k,1}\psi_{w,k}/\rho_{gw,k} - \beta''^{2}_{NO2,k,1}D_{eT,NO,k,1}} \right)$$

• A similar approach can be used for CO

#### Component Mass Balances Through Wall Inert layer / a reactant that does not react in layer

• If component does not react in layer, component mass balance is:

• 
$$D_{eT,j,k,l} \frac{\partial^2 C_{gw,j,k}}{\partial y^2} - \frac{\phi_{w,k}}{\rho_{gw,k}} \frac{\partial C_{gw,j,k}}{\partial y} = 0$$

- This has solution:
  - $C_{gw,j,k} = A_{j,k,l} + B_{j,k,l}e^{\beta'_{j,k,l}y}$
  - where  $\beta'_{j,k,l} = \frac{\phi_{w,k}}{\rho_{gw,k} D_{eT,j,k,l}}$

#### Component Mass Balances Through Wall

#### **Catalysed layer: Simple (& unlikely) case of first-order, unimolecular kinetics**

• For first-order, unimolecular kinetics, rate of formation given by:

• 
$$-R_{j,k}^{(vol)} = S_w k_{mw,j,k} (C_{gw,j,k} - C_{c,j,k}) = k_{j,k}^{(vol)} C_{c,j,k}$$

- First term is diffusion to catalyst phase from through-wall flow
- Second term is rate of reaction in catalyst phase
- Rearranging:

$$-R_{j,k}^{(vol)} = \frac{S_{w}k_{mw,j,k}k_{j,k}^{(vol)}C_{gw,j,k}}{S_{w}k_{mw,j,k}+k_{j,k}^{(vol)}}$$

• Component mass balance:

• 
$$D_{eT,j,k,l} \frac{\partial^2 C_{gw,j,k}}{\partial y^2} - \frac{\phi_{w,k}}{\rho_{gw,k}} \frac{\partial C_{gw,j,k}}{\partial y} - \frac{S_w k_{mw,j,k} k_{j,k}^{(vol)} C_{gw,j,k}}{S_w k_{mw,j,k} + k_{j,k}^{(vol)}} = 0$$

• This has solution of the form:

• 
$$C_{gw,j,k} = A_{j,k,l}e^{\alpha_{j,k,l}'''} + B_{j,k,l}e^{\beta_{j,k,l}'''}$$

 $k_{j,k}^{(vol)}$  =volumetric rate constant  $k_{mw,j,k}$ =mass transfer coefficient  $R_{j,k}^{(vol)}$  =rate per unit volume of catalyst phase  $S_w$  =external surface area per unit volume for catalyst phase

#### Component Mass Balances Through Wall Catalysed layer: Real kinetics

- Make simplifying approximation of single concentration for each species in each element
- Component mass balance:

• 
$$D_{eT,j,k,l} \frac{\partial^2 C_{gw,j,k}}{\partial y^2} - \frac{\phi_{w,k}}{\rho_{gw,k}} \frac{\partial C_{gw,j,k}}{\partial y} + S_w k_{mw,j,k} (\overline{C_{c,j,k}} - C_{gw,j,k}) = 0$$

- Use mass transfer term for diffusion of reactant/product to catalyst
- Have used single, representative concentration for catalyst phase,  $\overline{C_{c,j,k}}$
- Result is linear, second-order differential equation
- Solution for concentration through layer is:

• 
$$C_{gw,j,k} = A_{j,k,l}e^{\alpha_{j,k,l}y} + B_{j,k,l}e^{\beta_{j,k,l}y} + \overline{C_{c,j,k}}$$

#### **Continuity Between Layers**

- Between layers convective and diffusive fluxes continuous:
  - $C_{gw,j,k}|_{y_l,l-1} = C_{gw,j,k}|_{y_l,l}$

• 
$$D_{eT,j,k,l-1} \frac{\partial C_{gw,j,k}}{\partial y}\Big|_{y_l,l-1} = D_{eT,j,k,l} \frac{\partial C_{gw,j,k}}{\partial y}\Big|_{y_l,l}$$

- Similarly, for interface between inlet channel and soot cake:
  - Concentration/convection continuity included in inlet channel component mass balance

• 
$$k_{mi,j,k}\left(\frac{[x_{gi,j,k-1}C_{Ti,k-1}+x_{gi,j,k}C_{Ti,k}]}{2}-C_{gw0,j,k}\right) = -D_{eT,j,k,1}\frac{\partial C_{gw,j,k}}{\partial y}\Big|_{y=0}$$

• Similar equations apply for outlet channel

### Putting it All Together: Solution of Equations

- Have set of linear simultaneous equations
- If have m layers, for each species and each axial element have:
  - Unknowns:
    - Concentration in inlet and outlet channels
    - Two arbitrary constants per layer 2m
  - Equations:
    - Component mass balance for inlet and outlet channel
    - Continuity of diffusive flux between each channel and wall
    - Continuity of concentration and diffusive flux between layers 2(m-1)
  - Total: 2m+2 unknowns & equations therefore can solve
- Write equations in matrix form (GH = J) and solve for the unknowns  $(H = G^{-1}J)$

#### Solution of Simultaneous Equations Solve for each species in each axial element

## Write system of simultaneous equations as GH = J; solve for unknowns in H = G = G

|   | $\left(d_{i,k}^{2}\phi_{i,k}/M + p_{i}k_{mi,j,k}C_{Ti,k}\delta z/2\right)$ | $-(p_i k_{mi,j,k} - 4\psi_{w,k}/\rho_{gw,k})\delta z$                   | $-(p_i k_{mi,j,k} - 4\psi_{w,k}/\rho_{gw,k})\delta z$                | 0  | 0                                                         | 0                                                         | 0                                                       | 0                                                                                 | 0                                                                              | 0                                                              |
|---|----------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|----|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|
|   | $k_{mi,j,k}C_{Ti,k}/2$                                                     | $-k_{mi,j,k} + D_{eT,j,k,1}\alpha_{j,k,1}''$                            | $-k_{mi,j,k} + D_{eT,j,k,1}\beta_{j,k,1}''$                          | 0  | 0                                                         | 0                                                         | 0                                                       | 0                                                                                 | 0                                                                              | 0                                                              |
|   | 0                                                                          | $-\exp(\alpha_{j,k,1}''\delta_1)$                                       | $-\exp(eta_{j,k,1}'\delta_1)$                                        | 1  | 1                                                         | 0                                                         | 0                                                       | 0                                                                                 | 0                                                                              | 0                                                              |
|   | 0                                                                          | $-D_{eT,j,k,1}\alpha_{j,k,1}''\exp\bigl(\alpha_{j,k,1}''\delta_1\bigr)$ | $-D_{eT,j,k,1}\beta_{j,k,1}''\exp\bigl(\beta_{j,k,1}'\delta_1\bigr)$ | 0  | $D_{eT,j,k,2}\beta'_{j,k,2}$                              | 0                                                         | 0                                                       | 0                                                                                 | 0                                                                              | 0                                                              |
|   | 0                                                                          | 0                                                                       | 0                                                                    | -1 | $-\exp(\beta'_{j,k,2}\delta_2)$                           | 1                                                         | 1                                                       | 0                                                                                 | 0                                                                              | 0                                                              |
| - | 0                                                                          | 0                                                                       | 0                                                                    | 0  | $-D_{eT,j,k,2}\beta'_{j,k,2}\exp(\beta'_{j,k,2}\delta_2)$ | $D_{eT,j,k,3}\alpha_{j,k,3}$                              | $D_{eT,j,k,3}\beta_{j,k,3}$                             | 0                                                                                 | 0                                                                              | 0                                                              |
|   | 0                                                                          | 0                                                                       | 0                                                                    | 0  | 0                                                         | $-\exp(\alpha_{j,k,3}\delta_3)$                           | $-\exp(\beta_{j,k,3}\delta_3)$                          | 1                                                                                 | 1                                                                              | 0                                                              |
|   | 0                                                                          | 0                                                                       | 0                                                                    | 0  | 0                                                         | $-D_{eT,j,k,3}\alpha_{j,k,3}\exp(\alpha_{j,k,3}\delta_3)$ | $-D_{eT,j,k,3}\beta_{j,k,3}\exp(\beta_{j,k,3}\delta_3)$ | $D_{eT,j,k,4}\alpha_{j,k,4}$                                                      | $D_{eT,j,k,4}\beta_{j,k,4}$                                                    | 0                                                              |
|   | 0                                                                          | 0                                                                       | 0                                                                    | 0  | 0                                                         | 0                                                         | 0                                                       | $-(p_o k_{mo,j,k} + 4\psi_{w,k}/\rho_{gw,k})\exp(\alpha_{j,k,4}\delta_4)\delta z$ | $-(p_o k_{mo,j,k}+4\psi_{w,k}/\rho_{gw,k})\exp(\beta_{j,k,4}\delta_4)\delta z$ | $d_o^2 \phi_{o,k}/M + p_o k_{mo,j,k} C_{To,k} \delta z/\gamma$ |
|   | \ 0                                                                        | 0                                                                       | 0                                                                    | 0  | 0                                                         | 0                                                         | 0                                                       | $-(k_{mo,j,k}+D_{eT,j,k,4}\alpha_{j,k,4})\exp(\alpha_{j,k,4}\delta_4)$            | $-(k_{mo,j,k}+D_{eT,j,k,4}\beta_{j,k,4})\exp(\beta_{j,k,4}\delta_4)$           | $k_{mo,j,k}C_{To,k}/\gamma$                                    |

$$H = \begin{pmatrix} x_{gi,j,k} \\ A_{j,k,1} \\ B_{j,k,1} \\ A_{j,k,2} \\ B_{j,k,2} \\ A_{j,k,3} \\ B_{j,k,3} \\ A_{j,k,4} \\ B_{j,k,4} \\ x_{go,j,k} \end{pmatrix} J = \begin{pmatrix} (d_{i,k-1}^{2} \phi_{i,k-1}/M - p_{i}k_{mi,j,k}C_{Ti,k-1}\delta z/2)x_{gi,j,k-1} + (p_{i}k_{mi,j,k} - 4\psi_{w,k}/\rho_{gw,k})T_{1}\delta z \\ k_{mi,j,k}(T_{1} - x_{gi,j,k-1}C_{Ti,k-1}/2) - D_{eT,j,k,1}D_{1} \\ T_{2} \\ D_{eT,j,k,1}D_{2} \\ -C_{c3} \\ 0 \\ C_{c3} - C_{c4} \\ 0 \\ (d_{o}^{2}\phi_{o,k-1}/M - p_{o}k_{mo,j,k}C_{To,k-1}\delta z/\gamma)x_{go,j,k-1} + (p_{o}k_{mo,j,k} + 4\psi_{w,k}/\rho_{gw,k})C_{c4}\delta z \\ k_{mo,j,k}(C_{s4} - x_{go,j,k-1}C_{To,k-1}/\gamma) \\ & (0 \\ 0 \\ 0 \\ (d_{o}^{2}\phi_{o,k-1}/M - p_{o}k_{mo,j,k}C_{To,k-1}\delta z/\gamma)x_{go,j,k-1} + (p_{o}k_{mo,j,k} + 4\psi_{w,k}/\rho_{gw,k})C_{c4}\delta z \\ \end{pmatrix}_{17}$$

#### Catalyst Phase Component Mass Balance

- Including diffusion between through-wall flow and catalyst phase enables calculation
  of rates of reaction to be separated from rest of mass balances a key simplification
- For an element of volume in catalyst phase, component mass balance:

$$\underbrace{\epsilon_c \frac{\partial C_{c,j,k}}{\partial t}}_{\text{Accumulation}} = \underbrace{S_w k_{mw,j,k} (C_{gw,j,k} - C_{c,j,k})}_{\text{Diffusion to catalyst phase}} + \underbrace{R_{j,k}^{(vol)}}_{\text{Rate}} \\ \underbrace{R_{j,k}^{(vol)} = \text{volumetric rate}}_{R_{j,k}} = \text{volumetric rate} \\ \underbrace{R_{j,k}}_{c} = \text{rate per unit mass catalyst}}_{c_c} \\ \underbrace{R_{j,k}}_{c_c} = \text{porosity of catalyst phase} \\ \underbrace{R_{j,k}}_{c_c} = \text{porosity phase} \\ \underbrace{R_{j,k}}_{c_c} = \text{porosi$$

• 
$$(1 - \epsilon_{PF})f_c\epsilon_c \frac{\partial C_{c,j,k}}{\partial t} = 2d\rho_{Cell}S_w k_{mw,j,k} \int_0^{\delta_c} (C_{gw,j,k} - \overline{C_{c,j,k}})dy + S_a R_{j,k}$$

- Have representative concentration in catalyst phase,  $\overline{C_{c,j,k}}$ ; evaluate rate  $(R_{j,k})$  at this
  - Exact if  $C_{c,j,k} \rightarrow 0$  (case if diffusion to catalyst limiting), otherwise an approximation
- Substitute solution for  $C_{gw,j,k}$  and evaluate integral:

$$\int \int (1 - \epsilon_{PF}) f_c \epsilon_c \frac{\partial \overline{C_{c,j,k}}}{\partial t} = 2d\rho_{Cell} S_w k_{mw,j,k} \left( \frac{A_{j,k,c}}{\alpha_{j,k,c}} \left( e^{\alpha_{j,k,c}\delta_c} - 1 \right) + \frac{B_{j,k,c}}{\beta_{j,k,c}} \left( e^{\beta_{j,k,c}\delta_c} - 1 \right) \right) + S_a R_{j,k}$$

| 01 | Concept                                              |
|----|------------------------------------------------------|
| 02 | Model description                                    |
| 03 | Simulation conditions and parameters                 |
| 04 | Example simulations: Oxidation of gaseous components |
| 05 | Example simulations: Soot oxidation                  |
| 06 | Summary / Conclusions                                |

#### Simulation Conditions and Parameters

- Simulations run for:
  - 118.4×152.4mm (4.66×6in), 300/8 symmetric filter
  - Wall has porosity 50%, mean pore diameter 16µm
- Three locations for catalyst phase:
  - Throughout whole thickness of filter wall, top half of wall, bottom half of wall
- Mass transfer coeff<sup>n</sup> for diffusion between inlet channel & wall increases with wall flow
  - $Sh_i = Sh_0 + 0.60Pe_W 0.143Re_W$  (Bissett, Kostoglou, Konstandopoulos, Chem. Eng. Sci. 84, 255-265 (2012))
  - Otherwise, inlet channel concentration increases along channel at high flow
- Surface area per unit volume for diffusion to catalyst, S<sub>w</sub>, assumed to be equated to surface area of pores in the wall divided by wall volume of wall
  - Assumes all pores are lined by catalyst

| 01 | Concept                                                                      |
|----|------------------------------------------------------------------------------|
| 02 | Model description                                                            |
| 03 | Simulation conditions and parameters                                         |
| 04 | What should the concentration of gas convecting out of the inlet channel be? |
| 05 | Example simulations: Oxidation of gaseous components                         |
| 06 | Example simulations: Soot oxidation                                          |
| 07 | Summary / Conclusions                                                        |

## Predicted Axial Profiles for $n-C_{10}H_{22}$ Oxidation



- Change in concentration across wall due to reaction; this increases with temperature ٠
- Concentration decreases along inlet channel due to diffusion of  $C_{10}H_{22}$  from channel to wall •
- Concentration in outlet channel result of mixing of gas passing along channel and gas flowing in from wall, plus diffusion Mass flow 0.015 kg s<sup>-1</sup>, catalyst throughout wall © Johnson Matthey 22

#### Predicted Axial Profiles for CO Oxidation



- Very different behaviour from  $n-C_{10}H_{22}$
- Strongly self-inhibited reaction exhibits multiple state states
- Sharp change from kinetic control to transported limited regime
  - Concentration in catalyst phase plumets to practically zero at this transition
- In kinetic control region:
  - Curve is concave: reaction becomes faster CO concentration falls due to self-inhibition
  - See decrease in concentration across wall

Figure first published in [1] by Springer Nature. © T.C. Watling, under exclusive license to Springer Nature AG 2023

| 01 | Concept                                              |
|----|------------------------------------------------------|
| 02 | Model description                                    |
| 03 | Simulation conditions and parameters                 |
| 04 | Example simulations: Oxidation of gaseous components |
| 05 | Example simulations: Soot oxidation                  |
| 06 | Summary / Conclusions                                |

#### Soot Oxidation: "NO-Only" Feed Model prediction



300°C inlet temperature Initial soot loading 6 g  $L^{-1}$ Simulate for 2000 s

- No NO<sub>2</sub> in feed, so reliant on NO<sub>2</sub> generated on catalyst for soot oxidation
- Soot oxidation favoured by:
  - Low mass flow
    - Lower flow for NO<sub>2</sub> to diffuse against
    - Increases residence time in catalyst and soot cake
  - Proximity of catalyst to soot cake
    - Top half > throughout > bottom half
    - Means shorter diffusion distance

# Soot Oxidation: NO+NO<sub>2</sub> Feed Model prediction



300°C inlet temperature Initial soot loading 6 g  $L^{-1}$ Simulate for 2000 s

- Faster soot oxidation when NO<sub>2</sub> fed
- Mass flow trend reversed compared to NO-only feed
  - Increasing mass flow increases supply of oxidant to soot
    - More important effect than reduction in contact time
- Catalyst coating still has advantage over uPF
  - This decreases with increasing mass flow
- Soot oxidation increases with proximity of catalyst to soot cake
  - But smaller effect than NO-only case

| 01 | Concept                                              |
|----|------------------------------------------------------|
| 02 | Model description                                    |
| 03 | Simulation conditions and parameters                 |
| 04 | Example simulations: Oxidation of gaseous components |
| 05 | Example simulations: Soot oxidation                  |
| 06 | Summary / Conclusions                                |

### Summary 1

- Simplified framework for modelling coated particulate filters
  - Avoids the need to discretise in through-wall direction
  - By making approximations/assumptions obtain set of linear simultaneous equations for each species in each axial element
  - Key assumptions:
    - Assume all wall & cake layers are slabs/cuboids neglect taper on soot and ash cakes
    - Single concentration for each species in each axial element

## Summary 2: How Successful is Modelling Approach?

- Good:
  - Plausible predictions
    - Predict differences with through-wall catalyst location
  - Approximation of single concentration for each species in an axial element helped by the fact that reaction is spread along the length of the filter
- However, inevitably a model is always a simplification
  - Distribution of reaction (& concentrations) through wall is approximated