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The 1st Challenge

Particulate have complex geometries, requiring complex meshing

500 nm

Li et al. (2016) Portrait and Classification of Individual Haze Particulates. Journal of Environmental Protection, 7, 1355-1379.

Slow-moving particles have a long-range influence, and require
very large domains.

Finite-volume method not very efficient for single particulate,
and not tractable for large numbers of interacting particles.



Method of Fundamental Solutions (MFS)

What is the flow response to a point forcing?

V-v=0
Vp — uVv = fé(r)



Method of Fundamental Solutions (MFS)
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Vp — uVv = fé(r)
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The 2nd Challenge
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Going beyond the Stokes equations
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o Boltzmann equation too expensive; Navier-Stokes too inaccurate.

o Extended continuum equations offer a best-of-both-worlds solution




The linearised G13 equations

Continuum equations derived from the Boltzmann equation
Grad’s 13-moment equations (and Regularised set, R13)

obtained from Hermite polynomial expansion of the velocity
distribution function about a local equilibrium state

Linearised steady form of Grad’s 13 moment equations:

S = —2Kn'Vov —:%Kn’V—q, :

q = —%Kn’V@ —i%Kn’V .S
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Fundamental solutions to G13 equations

Continuum equations derived from the Boltzmann equation
Grad’s 13-moment equations (and Regularised set, R13)

obtained from Hermite polynomial expansion of the velocity
distribution function about a local equilibrium state

Linearised steady form of Grad’s 13 moment equations:

V-.-v=0
Vp+V.S=fir)
V.q=ygdr)

S =—2Kn'Vv —£Kn'Vq,

q = —%Kn’V@ —i%Kn’V .S
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G13 boundary conditions

The velocity boundary condition:

| T 1
V;="Vy,; — Enj +S;+ (I —nn;) — gqj + (I —njn,),

slip thermal creep

The temperature boundary condition:

I /= |
O =0wi =5\ 5™ 4~ 7S

jump
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Simulating Soot
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Simulating Soot

thermophoresis
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