Quantifying Tyre Wear in the Urban Aerosol Mixture

David Green

Senior Research Fellow, Imperial College London

NIHR Health Protection Research Unit in Environmental Exposures and Health at Imperial College London MRC Centre for Environment & Health

Imperial College London

Contents

- Background
- Measurement Challenges
- Established measurement approaches
- Current research and next steps

Why are we concerned?

NAEI, 2018. UK National Atmospheric Emissions Inventory, http://naei.beis.gov.uk/

Fussell et al. 2022 A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures DOI: 10.1021/acs.est.2c01072

What is causing this?

International Energy Agency Global EV Data Explorer

Average mass of new cars 2021 EU 1,481 kg (ICCT, 2023) US 1,946 kg (EPA, 2023)

Isolate Source

Increment Approach to Measurement Studies

Identify and Quantify Concentration

Chemical Components

 Rubber hydrocarbons (40–60%), filler (20–35%), softener (15%), textile and metal reinforcement (5–10%), vulcanization agents (2–5%), other additives (5–10%).

Physical Properties

- Less than 1% by volume of the particles in tyre wear emissions are PM₁₀.
- Within PM₁₀, more than 60% of tire wear particles (by mass) are generally between 2.5 and 10 μm in size.

Tyre and Road Wear Particles Mixture of tyre wear, road surface and other material

Elemental Markers

- Increment Approach
- Cascade Impactor
- Brake Wear Barium
 1.1% brake dust
 55% PM₁₀
- Tyre Wear Zinc
 1% of tyre rubber
 11% PM₁₀
- Resuspended Dust Silicon
 28% of earth's crust
 38% of PM₁₀

Harrison et al. 2012 Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements DOI: 10.1021/es300894r

Polymer Markers

- Increment Approach
- PM_{2.5} and PM₁₀ samplers
- Styrene butadiene rubber, butadiene rubber & natural rubber using GC/MS
- PM_{2.5} contribution of Tread
 0.06–0.25% (London)
 0.05–0.17% (Tokyo)
 0.05–0.34% (Los Angeles)
- PM₁₀ contribution of Tread
 0.45–2.48% (London)
- TRWP assumed to be 2 x tread

Panko et al. 2019 Evaluation of Tire Wear Contribution to $\rm PM_{2.5}$ in Urban Environments DOI: 10.3390/atmos10020099

Elemental Markers at High Time Resolution

- Increment Approach
- 19 elements hourly PM₁₀ using Xray fluorescence
- Zn as a marker for tyre wear
- Tyre wear contributed 6% to PM₁₀
- Lockdown

32% reduction in traffic volume 15% increase in average speed

- Non exhaust emission factors (mg/vkm) calculated using fleet CO₂ emission factors
- Speed and road surface wetness specific emission factors

Hicks et al. 2021 Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road DOI: 10.3390/atmos12020190

Elemental Markers at High Time Resolution

- Increment Approach
- 20 elements hourly PM₁₀ using Xray fluorescence
- Zn as a marker for tyre wear
- Tyre wear contributed 6% to PM₁₀
- Lockdown

32% reduction in traffic volume 15% increase in average speed

- Non exhaust emission factors (mg/vkm) calculated using fleet CO₂ emission factors for LDV and HDV
- Speed and road surface wetness specific emission factors

Hicks et al. 2021 Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road DOI: 10.3390/atmos12020190

Receptor Modelling / Source Apportionment

Receptor Modelling / Source Apportionment

in urban environments in London utilising the roadside increment data - In preparation

Receptor Modelling / Source Apportionment

- Increment Approach
- 20 elements hourly PM₁₀ using Xray fluorescence
- Data / statistical driven assessment of TRWP
- Only represents measured elemental components not mass contribution

Tremper et al. 2021 Novel source apportionment of trace elements in urban environments in London utilising the roadside increment data - In preparation

Developing Mass Spectral Factor Profiles

- Establish fingerprints for tyre wear in high time resolution field-based mass spectrometers
- Quantify tyre wear contribution in established supersite instrument suite
- Sub hour time resolution in PM₁ or PM_{2.5}

Establishing Health Impacts

- Assessing the Impact of Non-exhaust Emissions on the Asthmatic Airway (IONA) Protocol for a randomised three exposure crossover study
- US Health Effects Institute Study
- Acute impacts of NEE on the lung function and airway immune status of asthmatic adults
- Using source apportionment outputs from supersites + high speed road

Take Home Messages

- Quantifying tyre wear in ambient PM₁₀ and PM_{2.5} is challenging
- Assessments using elemental markers show good agreement with established EF
- Polymer markers provide lower estimates
- High time resolution measurement approaches capture complex emission profile, meteorological and emission variability
- Further work needed to establish polymer tracers for use in established instrumentation
- Human exposure trials are in progress to assess health impacts...